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Abstract. A cylindrical Ising model between thermostats is used to explore the heat conduction for any
temperature interval. The standard Q2R and Creutz dynamics, previously used by Saito, Takesue and
Miyashita, fail below the critical temperature, limiting the analysis to high temperatures intervals. We
introduce improved dynamics by removing limitations due to the chessboard-like refresh, and by supple-
menting the Q2R rule with Kadanoff-Swift moves. These new dynamics not only prove highly efficient
in recovering old results in their domains of validity, but also allow exploration of steady heat transport
between two arbitrary temperatures, i.e. very far from equilibrium. From an ansatz avoiding references to
quasi equilibrium or to local temperature, and from comparison with numerical simulations, we can con-
sistently define a generalized diffusivity. Its dependence on the energy density may be evaluated without
any recourse to the Green-Kubo formula.

PACS. 05.60.-k Transport processes – 05.50.+q Lattice theory and statistics (Ising, Potts, etc.) – 44.10.+i
Heat conduction

1 Introduction

In studying non-equilibrium properties, much attention
has been devoted to heat transport phenomena in terms
of microscopic dynamics, checking the validity of Fourier’s
Law, or looking at reasons for its possible failure. Anoma-
lies have been noticed recently and discussed, for instance,
in Hamiltonian nonlinear systems (see [1] and references
therein). We recall that, according to the phenomenolog-
ical Fourier’s Law, for a macroscopic system in a steady
state the heat flow is proportional to the temperature gra-
dient. This behavior is generally postulated for quasi equi-
librium states, where a local temperature exists. However,
a steady state may be defined also far from equilibrium, as
a state whose relevant mean properties are translationally
invariant in time.

Focusing on magnetic systems, most recent works
stress the one dimensional case for various models
(e.g. [2–5]). For two dimensional models, the literature is
sparse, despite the fact that such systems seem to be more
interesting. This is not only because they give realistic
properties in modelling real systems, but also conceptu-
ally, for the additional problems opened by the existence
of critical phenomena.

A cylindrical Ising model, i.e. a ferromagnetic square
lattice, with two borders at temperatures T1 and T2 in
one direction and periodic conditions in the other, has
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been studied for instance by Saito, Takesue and Miyashita
(STM) using Creutz and Q2R dynamics [6]. They show
that the conductivity at temperature T obtained through
the Green-Kubo formula is in good agreement with di-
rect measures of heat transfer when an infinitesimal tem-
perature gradient is applied to the borders (T1 = T and
T2 = T + δT ). In their investigations, a severe obstacle
arises from the failure of Q2R and Creutz dynamics be-
low the critical temperature Tc, where the system behaves
as if the conductivity were zero. Therefore, Fourier’s Law
has been successfully checked only for T > Tc. However,
transport phenomena also occur at low temperatures and
far from equilibrium. In particular, it is likely that anoma-
lies could appear in the range T1 < Tc < T2, with the
coexistence of different magnetic phases and with related
problems for interfaces, which have so far been completely
ignored. Therefore, in order to realistically simulate the
whole range of temperatures, another form of dynamics is
required.

In the present paper we shall introduce such an alter-
native dynamic model in two steps: (1) by substituting a
random update to the usual parallel refresh; (2) by sup-
plementing the Q2R rule with a second-neighbours move
suggested, in another context, by Kadanoff and Swift [7].
After checking the full consistency with previous results
at high temperatures, the new dynamics will be shown to
lead to meaningful simulations for every temperature in-
terval 0 ≤ T1 ≤ T2 ≤ ∞. We study the profile of energy
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densities along the direction of the temperature gradient
showing that our results are consistent with the Fourier
equation with a temperature dependent diffusivity.

The paper is organized as follows. In Section 2 we
present the model with old and new dynamics. In Sec-
tion 2.2 we consider random Q2R, showing, in particular,
that in the one dimensional system this first step alone
is sufficient to cancel spurious ballistic effects, leading to
the correct conduction law (exact probabilistic calcula-
tions are given in Appendix A). On the other hand, we
show that for the cylinder non-ergodic behaviour at low
temperature is still present. Moreover, we clarify some
thus far overlooked aspects and consequences of non-
ergodicity at low energy. In Section 2.3 the new dynamics
are presented, stressing on their conceptual and numerical
advantages. Numerical experiments on diffusion and
transport are reviewed in Section 3, with a systematic
comparison between equilibrium and non-equilibrium dis-
tributions (Sect. 3.1). For a more conceptual interpreta-
tion, in Section 3.2 we show that our results are consistent
with the Fourier approach rewritten in terms of energy
density. Moreover, from the energy distribution obtained
in our simulations, we can directly derive the behaviour of
diffusivity vs. energy, avoiding the Green-Kubo formula.
We show that the diffusivity tends to 0 at Tc in the ther-
modynamic limit, which is expected since diffusivity is the
ratio between conductivity and specific heat.

2 Conservative evolution rules at all energies

2.1 The cylindrical Ising model

The model considered by STM consists of a L×L square
lattice, with periodic conditions in the y direction and
open boundaries in the x direction, i.e. a cylindrical square
lattice. In every site the spin variable σx,y assumes values 1
or −1. Adjacent spins with opposite values give an energy
unit to the system. The normalized total energy Etot is
therefore:

Etot =
1

4L2

∑

x,y

∑

〈x,y〉

1 − σx,yσ〈x,y〉
2

(1)

where 〈x, y〉 are the nearest neighbors of the site (x, y).
The left and right boundaries are in contact with two

thermostats. In order to simulate such devices, two supple-
mentary columns have been added at each of the borders,
and the sites of such columns evolve with the usual equi-
librium Metropolis algorithm, i.e. their flip probability is

P (∆E) = P (−∆E)e−∆E/KT ,

where ∆E is the energy variation due to the flip and K is
the Boltzmann’s constant (here K = 1). Interacting with
such thermostats, fixed at T = T1 and T = T2 respec-
tively, the cylinder can exchange energy through the bor-
ders. Apart from this contact, energy is conserved, there-
fore all internal sites must evolve according to an energy
preserving (microcanonical) rule.

The simplest and traditional answer to the require-
ment of an energy preserving evolution for internal sites
is the Q2R rule, introduced in 1984 by Vichniac (see
e.g. [8–10]):
Q2R rule: in every site the spin is forced to flip when-
ever energy is preserved, i.e. when half the spins in the
neighborhood are up and half are down.

Such moves are usually applied in a parallel way and,
in order to avoid interferences, sites are updated along a
chessboard scheme. A “time step” consists therefore of two
semi-steps of L2/2 simultaneous moves, on the even and
the odd sublattices respectively. However, as recalled in
the Introduction, Q2R does not work for low energy densi-
ties, when most of the spins are aligned with small spots in
the opposite direction. Such spots are fixed or constrained
to short periodical motions, without any possibility of car-
rying energy through the lattice, as if conductivity were
zero. Moreover, final states strongly depend on the ini-
tial conditions, and orbits cannot explore the fixed-energy
subset of the configuration space: in other words, the sys-
tem is not ergodic. Problems arise just below the mean
energy corresponding to T = Tc. In the present units,
Tc � 2.27, and parallel computations performed by STM
block at around T = 2. The Creutz rule (which will not be
considered in the present paper) does not eliminate this
inconvenience.

For a chosen interval [T1 , T2], after reaching the steady
state, the typical quantity to consider is the mean energy
density 〈E(x)〉, where x is the column label (this requires
of course both time and column average for each x). Such
energy distributions 〈E(x)〉 may be plotted vs. x/L in
order to compare systems of different sizes.

2.2 Random update

We observe that there are no intrinsic or physical rea-
sons for the chessboard-like parallel update. More likely,
the localization of possible flips could be influenced by
small random perturbations. Our first improvement con-
sists therefore in altering the order of Q2R moves: instead
of the chessboard refresh, sites will be serially updated in
a random order. A “time step” τ is defined as a sequence
of L2 random choices. For brevity, this “random order”
rule will be denoted RQ2R.

Further support for the choice of random updates
comes from the one dimensional case, where the alter-
nate odd-even refresh implies a uniform “ballistic” mo-
tion of the spin variations (i.e. units of energy) along the
chain. As a consequence, every site has the same energy on
the average. Such a uniformity, independent of T1 and T2,
seems to be quite unphysical. Now, by using random up-
date, one rapidly reaches a steady state where the spatial
distribution of energies in the x direction is perfectly lin-
ear (see Fig. 1). This behaviour is consistent with a diffu-
sive behaviour of the energy and with Fourier’s Law with
constant diffusivity. We remark that the one dimensional
lattice is very peculiar, since Fourier’s Law may be exactly
recovered by looking at the microscopical evolution of the
link energies. Such a calculation is given in Appendix A.
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Fig. 1. The average energy density as a function of the site
position, for the 1-dimensional system with size L = 128 and
three temperature intervals. Averages run over 106 time steps.
On the borders the energies are given by the equilibrium values
Eeq(T1) and Eeq(T2).

In the two dimensional case, the passage to random up-
date is still not sufficient for a full dynamization of typical
low energy configurations. We shall report here a number
of experiments illustrating the conductivity breakdown.
This review is interesting in itself, and it will also be
useful for comparison with the improved dynamics of the
next sections. The likely reason why STM have overlooked
these situations consists in the fact that they focus on the
Green-Kubo formula, or equivalently on infinitesimal dif-
ference in temperature, while most interesting non ergodic
effects are present for T1 < Tc < T2.

An initial way to control the conductivity breakdown
is to give a common temperature T1 = T2 ≡ T12 to the
thermostats, and observe whether the system reaches an
equilibrium state corresponding to the temperature T12.
For T12 > Tc, no problem arises: Figure 2 shows that
each row has on average the same energy as the canonical
equilibrium distribution. Around Tc there is a dramatic
increase of the relaxation time, and just a little below Tc

the cylinder becomes non-conducting. The discontinuous
energy profile is a clear signal of this behaviour. Indeed, if
the system were a conductor, we would expect that, due to
heat exchanges, all the rows would have the same energy
on average. Finally, low temperature energy profiles, such
as those in Figure 2, depend on the initial conditions and,
starting with a uniform configuration (T = 0), the system
would not evolve at all. Such a behavior is a rough but
clear proof of the expected non-ergodicity.

The influence of the initial configuration is also evi-
dent in the more complex case with two temperatures,
T1 < Tc < T2 (Fig. 3). Starting from a low temperature
configuration, all is frozen and there is no heat exchange
between different rows. On the other hand, starting from
a random configuration (as we shall do from now on, un-
less otherwise stated), the heat flows. Energy profiles for
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Fig. 2. Average energy profiles when borders are fixed at the
same temperature T12. Different behaviour is observed at high
and low temperatures. For low temperature there is also evi-
dence of a strong dependence on the starting configuration. In
all figures, unless stated differently, the initial configuration is
chosen at random, i.e. T = ∞.
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Fig. 3. Average energy profiles when the border temperatures
are fixed to T1 = 1 and T2 = 4. The energies are obtained
by averaging over 107 time steps. Different behaviour may be
observed for different length and starting conditions.

growing L are shown in Figure 3. The presence of a thin
conducting layer near the cold thermostat is obviously es-
sential to keep a gradient of energy density in the x direc-
tion. The profile crossover, as L grows, may suggest that
the thickness of such last layer depends on the rule and the
temperature, but not on L. The existence of such a thin
conducting layer for every T1 > 0, at least when starting
from a high temperature, is a remarkable effect. It shows
that heat transport is possible even if one of the borders is
at a temperature where the conductivity would be defined
as zero: the apparent paradox is due to the fact that, as
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Fig. 4. The average energy density profiles for different border
temperatures and system sizes. The energies are obtained by
averaging over 107 time steps.

recalled in the Introduction, conductivity in this “static”
sense is calculated in the situation when T2 = T1 + δT ,
and δT → 0, giving zero indeed for T1 < Tc. Yet, also
for such a case, we verified that heat conductivity vs. size
scales in a normal way, i.e. as expected in 2-dimensional
systems, by fixing other parameters the energy transfer is
independent of the system size. As suggested by Figure 4,
if T1 is lowered the probability of conducting events on
the cold border decreases. Consistently, at T1 = 0, all is
frozen on the cold side: indeed in this case the energy dis-
tribution along the cylinder is flat, therefore there is no
energy gradient and the heat transport vanishes as if the
cold barrier were an insulator.

2.3 The Kadanoff-Swift move

In a different context, Kadanoff and Swift (KS) introduced
a “magnetization preserving” microcanonical rule using a
second-neighbor move [7].
KS move: consider a diagonal with two opposite spins,
and exchange them whenever this exchange preserves the
energy.

As a matter of fact, the conservation of magnetization
is not required in this current study, but KS and Q2R
moves can cooperate resolving local stalls: this means that
sites and diagonals will be randomly chosen, alternating
KS and Q2R rules, and a cycle of L2 moves will constitute
a single time step τ . This new energy-preserving dynamic
model will be denoted KQ, by contracting KS and Q2R.
It proves highly efficient in the dynamization of low en-
ergy situations, both in terms of a faster relaxation to the
steady state and of activation of otherwise frozen phases.

The reliability of this KQ dynamic method can be
checked by some obvious tests:

1. for every temperature T12, putting T1 = T2 = T12 we
expect to relax to the equilibrium state equivalent to
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Fig. 5. The average energy of the system considering the stan-
dard bulk Metropolis dynamics, the RQ2R and the KQ dy-
namics for different temperatures T1 = T2 = T12 the bulk
dynamics have been performed with the whole system at tem-
perature T12.

the usual Ising-Metropolis model at the same temper-
ature T12. This indeed happens, with KQ dynamics,
in the whole range of temperatures as illustrated in
Figure 5, proving the effectiveness of the thermal con-
tact with the thermostats (unlike the severe restric-
tions for previous rules). Moreover, the energy distri-
bution along the cylinder is uniform on average.

2. in all cases, there is independence of initial conditions.
In particular, it is possible to warm up an initially
cold state, which is substantially more realistic than
in previously considered dynamics.

3. unlike RQ2R, for the KQ dynamics there is heat-
transport for any [T1, T2], including the case of T1 = 0.
Moreover, the energy density profile is size indepen-
dent even if T1 < Tc < T2, apart from possible finite
size effects relevant at the critical energy. These prop-
erties are illustrated in Figure 6, where the average
energy density profiles, for T1 = 0 and T2 = 4, are
plotted for different system sizes.

4. starting from a random configuration, the transient be-
fore the steady state should be longer for lower temper-
atures at fixed dynamics, and faster in general for the
KQ with respect to other dynamics. This is true. Actu-
ally, taking for instance L = 64, with T1 = 1, T2 = 4,
a typical transient time is 103 steps for KQ, and 105

for RQ2R.
5. for Tc < T1 < T2, all should be the same (at least

qualitatively) with all the rules, as it is. In this case
indeed we always obtain a linear behaviour (constant
diffusivity) as commented in Figure 7.

In conclusion, all tests agree on the reliability of KQ dy-
namics as an efficient alternative to previously considered
rules, with a substantially larger domain of application.
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Fig. 6. The average energy density profiles for different system
sizes. The energies are obtained averaging over 105 time steps.

3 Numerical experiments

3.1 Staying far from equilibrium

Consider the standard periodic Ising-Metropolis lattice at
equilibrium. For every temperature T , one can obtain the
corresponding mean energy density Eeq(T ). The simplest
curve which can be compared to the energy distribution
profile is the distribution that one would get if the sys-
tem were at local equilibrium and the temperature diffuses
uniformly with constant conductivity. In this hypothesis
the temperature would increase uniformly from T1 to T2

along the cylinder, and for each site one could consider the
energy Eeq(x), where Eeq is the equilibrium energy cor-
responding to the temperature T assigned to the site x.
Of course, such a hypothesis is an oversimplification, how-
ever the energy profiles Eeq(x) may constitute a reference
frame for comparisons.

In all cases, by construction, the spatial profile 〈E〉
passes at the extremes Ēeq(T1) and Ēeq(T2), but the inter-
mediate distributions strongly depend on the temperature
interval. In particular, when T1 is also much greater than
Tc, 〈E(x)〉 is almost linear (see Fig. 7). As noticed in the
one dimensional case, this linear behaviour corresponds to
a uniform heat diffusion, with a diffusivity independent of
〈E〉. We note that, due to the non-constant specific heat,
the uniform diffusion of the energy does not correspond
to a uniform diffusion of the temperature. On the con-
trary, when Tc lies within the interval [T1 , T2], the spatial
profile is more complicated (Fig. 8), and the simple pic-
ture of a uniform diffusion for temperature or energy does
not work. A more general and effective framework will be
discussed in the next subsection.

An interesting insight is offered by focusing on the
cylinder configurations (Fig. 9), where a structured dis-
tribution of clusters is clearly detectable around the criti-
cal energy, just between the “chaotic ” homogeneous grey
of high energies or temperatures (magnetization M = 0)
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Fig. 7. The average energy density profiles when T1 = 6 and
T2 = 20. The system size is L = 64 and the energies are ob-
tained averaging over 105 time steps.
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Fig. 8. The average energy density profiles when T1 = 0 and
T2 = 4 compared with equilibrium distribution. The system
size is L = 128 and the energies are obtained averaging over
105 time steps.

and the increasingly black (or white) configurations of low
energies ( |M | > 0, up to 1). The statistical problem of in-
terfaces will be treated in a subsequent paper. We only ob-
serve here that this configurational transition takes place
around E(Tc), as expected, independently of the applied
extreme temperatures. Thus, by lowering the difference
T2 − T1 (always with T1 < Tc < T2) all goes as if we per-
formed a zoom in the region around Tc. In other terms,
there is an effective continuity in the configurational be-
havior of the system, observed by comparing what hap-
pens by lowering T2 − T1 at constant L and by enlarging
L at constant T2 − T1.
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Fig. 9. A spin configuration, for size L = 128 and borders
fixed at T1 = 1 and T2 = 5. The line between represents (in
arbitrary units) the growth of the average energy along the
cylinder.

3.2 Fourier’s law and diffusivity

The discrepancy of energy profiles with respect to the
equilibrium distribution suggests the presence of non triv-
ial transport properties with a possible dependence of the
local conductivity (and diffusivity) on the energy.

We return therefore to Fourier’s empirical transport
assumption from the very beginning, in terms of the
heat flow through an elementary block. Usually, at quasi-
equilibrium (required in order to speak of a local temper-
ature), the minimal assumption is that the flowing heat
energy per unit area is proportional to the temperature
gradient ∇T via a proportionality constant κ (conduc-
tivity). This constant depends in principle on the energy
density and in a non homogeneous model, on the spatial
coordinates, through a matter density function ρ. This
makes the assumption extremely general. Moreover, the
usual conditions leading to Fourier’s equation read

ρ
∂E

∂t
=

∂

∂x

(
κ

∂T

∂x

)
+

∂

∂y

(
κ

∂T

∂y

)
+

∂

∂z

(
κ

∂T

∂z

)
. (2)

As for the one dimensional array in Appendix A, we shall
insist for notational convenience on the differential sym-
bolism, even if our case is crudely discrete. Actually, con-
duction is one dimensional, the only gradient variable is x,
and the minimal x is the lattice step. The cylinder is ho-
mogeneous, and we may assume ρ = 1 everywhere. There-
fore, κ can depend on E, but not explicitly on x. As to a
minimal time, it depends on the dynamical rule. Remem-
bering that our time unit is τ = L2 moves, on a time scale
t much greater than τ the true observable is the mean

energy density Ẽ(x, t), i.e. E spatially averaged in the y
direction, and time averaged for a number of moves of the
order of some τ . Since these average operations are linear,
we can write:

∂Ẽ

∂t
=

∂

∂x

(
κ

∂T

∂x

)
, (3)

but
∂E

∂x
=

∂E

∂T

∂T

∂x
⇒ ∂T

∂x
=

∂Ẽ

∂x

/
∂Ẽ

∂T

therefore
∂Ẽ

∂t
=

∂

∂x

(
κ

C

∂Ẽ

∂x

)
(4)

where C = ∂Ẽ/∂T is the specific heat: this still assumes
the existence of a local temperature T . We can elimi-
nate the variable T , relying exclusively on the real ob-
servable Ẽ:

∂Ẽ

∂t
=

∂

∂x

(
D(E)

∂Ẽ

∂x

)
. (5)

In a quasi equilibrium state, (5) is equivalent to (4), i.e.
to the standard Fourier’s equation. However, since T does
not appear in (5), and Ẽ is a well defined observable in
every state, it may be read as an ansatz on the diffusion
in very general conditions, independently of the existence
of a local temperature. The function D = D(E) is a dif-
fusivity factor, recovering the normal diffusivity D = κ/C
in standard conditions.

Equation (5) can be introduced in an alternative way,
avoiding from the very beginning the concept of local tem-
perature. Let us consider a surface located at x1, dividing
the cylinder into two regions. Let Q be the amount of
energy crossing this surface so that ∂Q/∂t represents the
heat flux. A reasonable hypothesis is that

∂Q

∂t
= −D(E)

∂Ẽ

∂x
. (6)

Equation (6) simply states that the heat flows from the
side of the surface with highest energies to the side of low-
est energy and the heat flux is proportional to the energy
gradient. At this point, D(E) is a proportionally constant
depending only on the average energy of the surface. Let
us consider two surfaces located in x1 and in x2, one has:

∫ x2

x1

∂E

∂t
=

∂Q

∂t

∣∣∣∣
x1

− ∂Q

∂t

∣∣∣∣
x2

= D(E)
∂Ẽ

∂x

∣∣∣∣∣
x2

− D(E)
∂Ẽ

∂x

∣∣∣∣∣
x1

=
∫ x2

x1

∂

∂x

(
D(E)

∂Ẽ

∂x

)
(7)

since equation (7) holds for arbitrary x1 and x2 we obtain
equation (5).
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Fig. 10. Diffusivity evaluated by means of equation (8). The
constant γ, in each interval, is obtained from equation (9) by
calculating the heat absorbed per unit of time by the ther-
mostat at temperature T1. Data refer to several temperature
intervals, for L = 128 and averages over 105–106 time steps,
depending on the temperature interval.

Now, in the steady state ∂Ẽ/∂t = 0 , therefore from (5)
we have

∂

∂x

(
D(E)

∂Ẽ

∂x

)
= 0 , ⇒ D(Ẽ) =

γ

∂Ẽ/∂x
. (8)

The last term in (8) can be calculated numerically,
by looking for the derivative of the stationary quantity
Ẽ(x, t) = 〈E(x)〉, as it results from dynamical simula-
tions. The constant γ can be evaluated from the heat flux
through a surface. Indeed from (6) and (8) we have

γ =
∂Q

∂t
. (9)

In the stationary state the flux does not depend on the sur-
face position along the cylinder, so that one can evaluate
γ, for example, from the energy absorbed per unit of time
by the thermostat. The value of γ and D(E) are defined
apart from an overall multiplicative factor, depending on
the arbitrary definition of the timescales. However, once
the convention on the timescale is fixed, by looking at
the results obtained from different temperatures intervals
[T1, T2], one should obtain consistent diagrams of D(E)
vs. E. This is indeed the case, as shown in Figure 10.
The nice superposition of data relevant to different tem-
perature intervals is a strong proof of the above picture
of a heat flux with an energy dependent diffusivity. The
function D(E) presents a minimum at the critical energy
Eeq(Tc) � 0.15. We note that, since the specific heat C
diverges at Tc in the thermodynamic limit, D should van-
ish at the critical point, therefore the measured finite value
should be a finite size effect. This behaviour can indeed be
inferred from our data: the value of the minimum decrease
as the difference between T1 and T2 becomes smaller, and

this is equivalent (as remarked at the end of Sect. 3.1) to
increasingly larger values of L.

Finally, as for RQ2R, in this case there is also no
anomalous diffusion: for fixed T1 and T2 the heat flux is
independent of L, as expected for 2-dimensional systems.

Experimental studies exist where the measurement of
diffusivity is qualitatively compatible with our results (see
e.g. [11], and Fig. 1 therein), even if the cylindrical model
is obviously too simplified to reproduce details of real ma-
terials.

4 Conclusions and perspectives

The KQ dynamics we have introduced, in order to over-
come restrictions intrinsic to standard microcanonical dy-
namics, proves highly efficient in the exploration of the
whole range of temperatures intervals, providing a first
dynamical insight in steady states of the cylindrical spin
lattice with T1 < Tc < T2. In particular, we obtain a
quantitative estimate of the dependence of diffusivity on
the energy density, without any appeal to the Green-Kubo
formula.

Once such an energy dependent diffusivity is assumed,
the present analysis shows that heat transport follows the
normal Fourier’s law without anomalies (except maybe at
the transition point, where diffusivity tends to 0 in the
thermodynamic limit). In any case, the transition energy
is comparable with the mean energy density correspond-
ing to Tc in equilibrium theory. This confirms that there
is a continuity between steady states very far from equi-
librium and equilibrium states. The same continuity ap-
pears in the smoothness of the clustering process vs. L
in the critical domain, resulting from the zooming proce-
dure described at the end of Section 3.1. So far, however,
this last observation is based only on visual inspection of
configurations, and more refined analysis is required. The
coexistence of different phases in the steady state opens
up the problem of quantitative estimation of the relation
between the phase transition inside the cylinder and the
geometrical features of the surface sections perpendicular
to x (e.g. with regard to the degree of clustering). In a
future publication we shall deal with this problem using
entropy based methods (e.g. metrization of partitions as-
sociated with the configurations) already used in different
contexts (see for instance [12]).

As to the comparison with real materials, it would
be interesting to introduce defects or other complications
in the lattice, from small geometrical perturbations to a
substantial alteration of the topological features (such as
mean connectivity, fractality, breakdown of translational
invariance or other symmetries), in order to have more di-
rect control of the relevant features influencing heat trans-
port. This kind of analysis is currently in progress.

Appendix A: The one dimensional case

For a one dimensional spin array, assume that the xth
link in the configuration is (++) (other cases may be
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treated in the same way). This link has energy ex = 0.
There are four possible neighborhoods: (a) = +(++)+,
(b)= +(++)−, (c) = −(++)+ and (d) = −(++)−. In
the case (a), nothing can evolve. In both cases (b) and
(c), we have exactly one possibility, namely that the evo-
lution gives rise to (b′) = +(+−)− and to (c′)= −(−+)+
respectively. Finally, there are two possibilities of evolu-
tion for (d), precisely (d′) = −(+−)− ≡ (−+)(−−) and
(d′′)= −(−+)− ≡ (−−)(+−). Let us consider for exam-
ple the configuration (b), such a configuration may also
be read as (b)= (++)(+−), i.e. the link x is connected
with two links of energy ex−1 = 0 and ex+1 = 1. One
can easily check that for any configuration the probability
that the energy of the link x is increased by one unit is
proportional to

P (ex → ex +1) ∼ (ex−1− ex)+ (ex+1− ex) ≡ ∂2ex

∂x2
(10)

with the usually accepted continuous notation for discrete
variables. The same relation holds also when the xth link
is (−−). While for the cases (+−) and (−+) a similar re-
lation (with opposite sign) describes the probability that
the energy of the link is decreased by one unit. We con-
clude that in all cases, by linearity, for the averages we get

∂Ẽ

∂t
= D

∂2Ẽ

∂x2
(11)

which is precisely Fourier’s equation, with a constant
diffusivity D, referring to the mean energy instead of

temperature. However, this microscopic approach cannot
be generalized to the two dimensional lattice.
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